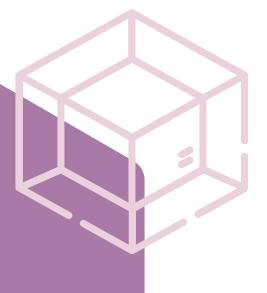


Blockchain 101

1

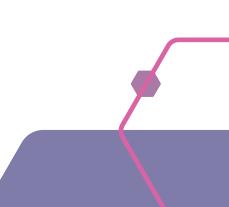
3

2 Trinity of Digital Trust


Smart Contract

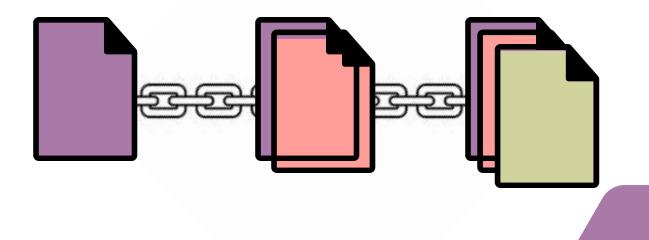
4 Digital Signature and Identification

01 Blockchain 101


A chain that changes the world.

What is blockchain?

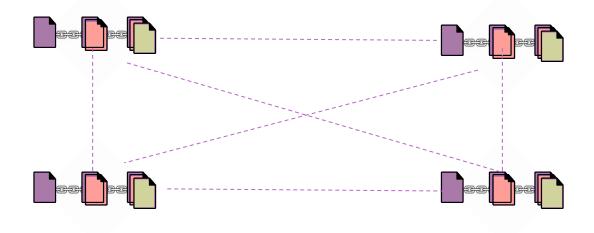
A Distributed ledger with single truth by consensus algorithm.



Distributed <u>ledger</u>

Ledger stores valid data. The old stack of data is also stored in the last ledger .

- The stack storage gives the "Append-only" characteristic to a ledge. It makes it very hard to amend the content of the previous data



Distributed ledger

A ledger is shared to many parties. Now, every parties own a single copy of the ledger.

- To amend the data, you need to compromise different parties to make the changes

Consensus algorithm

A consensus algorithm is needed to make sure all participants in the network knows how to agree on a single copy of ledger

The Desirable properties are:

- 1. Consistency2. Availability
- System validates data under the

 The system keeps running even inaccurate transaction occurs

Four Pillars of Blockchain Design



CONSENSUS

Transactions are endorsed by relevant participants

SHARED LEDGER

Append-only distributed system of records shared across business network

Ensuring appropriate visibility; I transaction are secure, authenticated, and verifiable

Business terms embedded in transactions records and executed automatically

O2 Trinity of Digital Trust

A balance between privacy, confidentiality and authenticity

Trinity of Digital Trust

Privacy

Ensure that only the necessary information is provided, and the other information remains

Confidentiality

Ensure that the data is protected against malicious parties

Js

Authenticity

EMALI

Ensure that the source of data is the expected personnel(s)

Privacy

Ensure that only the necessary information is provided, and the other information is protected

• Data sovereignty is done with a comprehensive access control protocols

Privacy: Zero-knowledge proof (ZK proof)

ZK proof is a way that allows provers to proof themselves without showing any other informations to the verifier.

• Example: To buy a beer, you need to proof that you are over 18-year-old. However, you do not want to show the staff HKID cards as it consist many sensitive informations. A classic ZK proof (Schnorr protocol) contains 3 stages:

EMAL

1. Commit

The prover make some commitment that he/she cannot be changed in later stages

2. Challenge

The verifier send some random challenge for prover

3. Response

The prover compute the proof based on the challenge and secret

Confidentiality

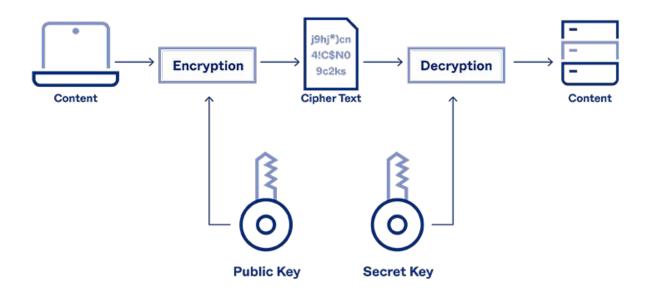
Ensure that the data is protected against malicious parties

• Encryption prevent data from leaking to the third party.

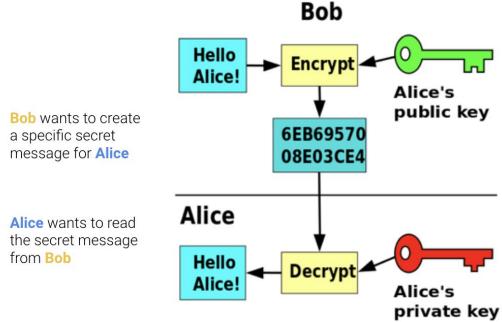
Confidentiality: Encryption

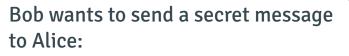
Encryption (used to protect sensitive information)

Example: Bob wants to send a secret message to Alice.


• Bob can encrypt the message with alice's public key

EMALI


- No one knows the message during delivery as it is encrypted
- Alice decrypt the message with her private key


Confidentiality: Asymmetric Encryption

ASYMMETRIC ENCRYPTION

Confidentiality: Encryption

EMALI

- Bob can encrypt the message with alice's public key
- No one knows the message during delivery as it is encrypted
- Alice decrypt the message with her private key

Authenticity

Ensure that the source of data is the expected personnel(s)

- Immutable record on data supported by blockchain (seen in section 1)
- Digital signature and DID (seen in section 4)

03

Smart Contract

Technology based promise that foster trust

Smart Contract

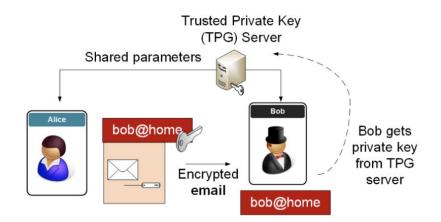
Smart Contract Analogy: Code executes

EMALI

Privacy Preserving: Access control and data sovereignty

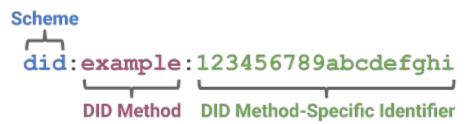
04 Digital Signature and Identification

Own an unique identity in the ever-changing digital world


Identity based encryption

Method explanation:

- ID as public key: Bob encrypted the message with the ID of Alice
- Private key stored at TPG server: Alice decrypt the message with the private retrieved from a trusted private key server


Compare to classic public key encryption

• Less difficult in memorising public key

EMALI

Decentralised Identifier (DIDs)

What is a DID?

- A globally unique identifier
- A component of the digital identity infrastructure
 - Standardized by W3C

How can it help with data authorship?

• No more "identity theft", user can own their identity no limited to certain platform

EMALI

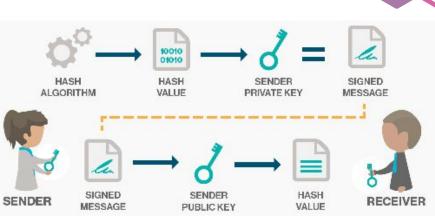
• An identifier for web 3.0

Digital signature vs PDF signature

Digital Signature Algorithms:

- Generate Key Pair Public Key (PK) & Private Key (sk)
- Signature Creates Digital Signature (Sig) from message (m) and Signer's Private Key (sk)
- Verification Verifies if a signature (Sig) is valid for a message (m) by Signer's Public Key (PK)

Property of Digital signature


EMAL

- All valid signatures verify
- Signatures infeasible to forge

Key pair verification

How does it works:

- Alice sign on a data with Alice's private key
- Verifier Bob verify the identity of Alice by trying to opening the data with Alice's public key
- In this way, Alice does not need to give anyone her private key proof that she is alice

EMALI

ABOUT EMALI

EMALI specialised in AI, blockchain, cryptography, security, and privacy technologies.

Emali's latest fintech solution is Hong Kong Monetary Authority's Commercial Data Interchange (CDI).